skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fleck, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cases of convergent adaptation, especially between close relatives within a lineage, provide insights into constraints underlying the mechanisms of evolution. We examined this in the carnivorous plant family Lentibulariaceae, with its highly divergent trap designs but shared need for prey digestion, by generating a chromosome-level genome assembly for Pinguicula gigantea, the giant butterwort. Our work confirms a history of whole-genome duplication in the genus and provides strong phylogenomic evidence for a sister-group relationship between Lentibulariaceae and Acanthaceae. The genome also reveals that a key digestive adaptation, the expansion of cysteine protease genes active in digestion, was achieved through independent tandem duplications in the butterwort (Pinguicula) and its close relative, the bladderwort (Utricularia). Most of these parallel expansions arose in non-homologous regions of the two genomes, with a smaller subset located on homologous blocks. This study provides clear genomic evidence for convergent evolution and illustrates how similar selective pressures can repeatedly shape genomes in analogous ways. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026
  2. Abstract The inversion of C3 stereochemistry in monoterpenoid indole alkaloids (MIAs), derived from the central precursor strictosidine (3S), is essential for synthesizing numerous 3RMIAs and oxindoles, including the antihypertensive drug reserpine found inRauvolfia serpentina(Indian snakeroot) andRauvolfia tetraphylla(devil pepper) of the plant family Apocynaceae. MIA biosynthesis begins with the reduction of strictosidine aglycone by various reductases, preserving the initial 3Sstereochemistry. In this study, we identify and biochemically characterize a conserved oxidase-reductase pair from the Apocynaceae, Rubiaceae, and Gelsemiaceae families of the order Gentianales: the heteroyohimbine/yohimbine/corynanthe C3-oxidase (HYC3O) and C3-reductase (HYC3R). These enzymes collaboratively invert the 3Sstereochemistry to 3Racross a range of substrates, resolving the long-standing question about the origin of 3RMIAs and oxindole derivatives, and facilitation of reserpine biosynthesis. Notably,HYC3OandHYC3Rare located within gene clusters in both theR. tetraphyllaandCatharanthus roseus(Madagascar periwinkle) genomes, which are partially homologous to an elusive geissoschizine synthase (GS) gene cluster we also identified in these species. InR. tetraphylla, these clusters occur closely in tandem on a single chromosome, likely stemming from a single segmental duplication event, while inC. roseus, a closely related member of rauvolfioid Apocynaceae, they were later separated by a chromosomal translocation. The ancestral genomic context for both clusters can be traced all the way back to common ancestry with grapevine. Given the presence of syntenic GS homologs inMitragyna speciosa(Rubiaceae), the GS cluster, at least in part, probably evolved at the base of the Gentianales, which split from other core eudicots up to 135 million years ago. We also show that the strictosidine biosynthetic gene cluster, required to initiate the MIA pathway, plausibly evolved concurrently. The reserpine biosynthetic cluster likely arose much later in the rauvolfioid lineage of Apocynaceae. Collectively, our work uncovers the genomic and biochemical basis for key events in MIA evolution and diversification, providing insights beyond the well-characterized vinblastine and ajmaline biosynthetic pathways. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  3. Abstract With populations of threatened and endangered species declining worldwide, efforts are being made to generate high quality genomic records of these species before they are lost forever. Here, we demonstrate that data from single Oxford Nanopore Technologies (ONT) MinION flow cells can, even in the absence of highly accurate short DNA-read polishing, produce high quality de novo plant genome assemblies adequate for downstream analyses, such as synteny and ploidy evaluations, paleodemographic analyses, and phylogenomics. This study focuses on three North American ash tree species in the genusFraxinus(Oleaceae) that were recently added to the International Union for Conservation of Nature (IUCN) Red List as critically endangered. Our results support a hexaploidy event at the base of the Oleaceae as well as a subsequent whole genome duplication shared bySyringa,Osmanthus,Olea, and Fraxinus. Finally, we demonstrate the use of ONT long-read sequencing data to reveal patterns in demographic history. 
    more » « less
  4. Abstract Coffea arabica, an allotetraploid hybrid ofCoffea eugenioidesandCoffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploidC. arabicaaccession and modern representatives of its diploid progenitors,C. eugenioidesandC. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000–610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed withC. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding ofC. arabica. 
    more » « less
  5. Abstract Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation,Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple,Syzygium grande. We show that whileSyzygiumshares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms thatSyzygiumoriginated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important inSyzygiumdiversification. 
    more » « less